If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+19k+42=0
a = 2; b = 19; c = +42;
Δ = b2-4ac
Δ = 192-4·2·42
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-5}{2*2}=\frac{-24}{4} =-6 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+5}{2*2}=\frac{-14}{4} =-3+1/2 $
| 13x=132 | | 2x+1-8+3x=x+2x-6+2x-1 | | 5g+6=4 | | 2.9k-3.2332=1-2.67k | | 8y-(8y+2)=-2 | | x-25.11=+31 | | (5x+6)+(2x)+(3x+4)=180 | | 0=100q | | (8x)(x)=392 | | -8-11x=-1 | | -8.751+5.5a=a-5.7+3.6a | | 3x=2(x-4)=32 | | 3+5x+7=7- | | 80+2x=56+2.80x | | 0.5^n=0.25 | | 0.5^n=25 | | 6a+24=8 | | 0.96-5.7x+5.6x=5.7x+2.7 | | 1,045=(x+15)x11 | | 4-8/3=n | | 25=14n | | 1,045=11(x+15) | | 5+3x+x=253 | | 0.128-0.42n=n+2.4 | | 1,045=15(x+11) | | 3y+2=6y+2 | | 2y+2=4y+1 | | 2y+4=6y+2 | | 7x=14x=3 | | 9.34+0.2v=5.3v-2.9 | | (x-3)(2x+1)=22 | | 100=4w*w |